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A.1 Scaling Coverage Diagnostics and Robustness

In this section, we report balance statistics for the candidates and elections included in our

regression sample compared to those that are excluded because they could not be assigned

an ideology score. As a point of comparison, we also report coverage statistics for DW-DIME

(Bonica 2018), even though we do not use it in the paper due to the small number of state

legislative candidates with available scores.

Table A.1 – Scaling Coverage Balance Table. Table reports the count
(rows 1-2), median count (row 3), and share (rows 4-10) of observations
with non-missing scalings broken down by candidate Attribute. Full Dataset

refers to the population values in the complete election returns dataset.

Scaling

Attribute Full Dataset ML Scaling HS Score Static CFscore Dynamic CFscore DW-DIME

1 Total Candidate-Years 129,058 62,768 63,092 120,494 119,881 3,164
2 Total Distinct Candidates 67,965 26,506 26,546 63,268 63,171 1,187
4 Incumbent 0.373 0.460 0.461 0.414 0.415 0.621
5 Democrat 0.506 0.491 0.490 0.499 0.499 0.495
6 Lower Chamber 0.770 0.791 0.790 0.759 0.759 0.558
7 Vote Share General 0.622 0.671 0.671 0.643 0.643 0.732
8 Win General 0.484 0.661 0.660 0.538 0.540 0.849
9 Vote Share Primary 0.416 0.529 0.528 0.452 0.454 0.561
10 Win Primary 0.785 0.907 0.907 0.821 0.822 0.944

Table A.2 – Midpoint Coverage Balance Table. This table reports
the number of general election races stratified by various race attributes
and data restrictions.

Data Restriction

Attribute All Races Contested Races Competitive Races
Races with

HMH Midpoint
Races with
HS Midpoint

Races with
StaticCF Midpoint

Races with
DW-DIME Midpoint

1 N Races 63,109 37,335 16,242 10,202 10,287 28,721 14
2 Average Win Margin 0.56 0.26 0.10 0.16 0.16 0.23 0.15
3 Share Incumbents 0.83 0.72 0.68 0.60 0.60 0.70 0.57
4 Average General Elec. Contribs. (1000s) 169 169 255 304 303 178 498
5 Average Dem. Pres. Vote Share 0.51 0.50 0.48 0.46 0.46 0.48 0.51
6 Average Year 2011 2011 2011 2011 2011 2011 2005
7 Share Western States 0.17 0.20 0.19 0.24 0.24 0.21 0.57
8 Share Midwestern States 0.25 0.30 0.30 0.37 0.37 0.28 0.29
9 Share Southern States 0.34 0.26 0.25 0.28 0.28 0.28 0.07
10 Share Eastern States 0.24 0.25 0.26 0.10 0.10 0.22 0.07

Shares for state geography may not sum to one due to rounding. Races with Midpoint must feature competition between one scalable candidate for each party.
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Table A.3 – Primary Extremism Coverage Balance Table. This
table reports the number of primary election races stratified by various race
attributes and data restrictions.

Data Restriction

Attribute All Races Contested Races Competitive Races
Races with

HMH Relative
Centrism

Races with
HS Relative
Centrism

Races with
StaticCF Relelative

Centrism

Races with
DW-DIME Relelative

Centrism

1 N Races 79,888 18,362 3,976 4,062 4,113 13,781 7
2 Average Win Margin 0.28 0.28 0.05 0.16 0.16 0.24 0.13
3 Share Incumbent 0.61 0.37 0.18 0.18 0.18 0.33 0.00
4 Average Primary Elec. Contribs. (1000s) 72 120 141 230 229 137 1,356
5 Average Dem. Pres. Vote Share 0.50 0.50 0.49 0.50 0.50 0.50 0.59
6 Average Year 2011 2012 2011 2011 2011 2011 2005
7 Share Western States 0.17 0.20 0.22 0.24 0.24 0.20 0.43
8 Share Midwestern States 0.26 0.27 0.27 0.29 0.29 0.27 0.29
9 Share Southern States 0.32 0.39 0.39 0.41 0.41 0.42 0.29
10 Share Eastern States 0.24 0.14 0.13 0.06 0.07 0.11 0.00

Note: Shares for state geography may not sum to one due to rounding. Races with Rel. Centrism must feature at least two scalable-candidates.
Following Table 5, the sample is restricted to contested primary elections and excludes races in districts where the opposing party received greater
than 70% of the two-party presidential vote share

Figure A.1 – ML Score Sample for Mid-
point Analysis. Using our ML score, this figure
plots the total number of general elections, con-
tested elections, elections with a margin less than
20%, and the number of observations in our anal-
ysis sample for every even-numbered year.
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Figure A.2 – ML Score Sample for Mid-
point Analysis. Using our ML score, for 20
equal-sample-sized bins of Democratic presiden-
tial vote share this figure plots the total number
of general elections, contested elections, elections
with a margin less than 20%, and the number of
observations in our analysis sample.
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A.2 Feature Engineering and Cross-Validation for ML

Scores

In this section, we provide details on the construction of the feature set for the random

forest, the design and results of the cross validation procedure to choose the optimal number

of predictors considered at each split in the trees, and the most predictive features from the

final model. We also report statistics on multistate donors and their role in enhancing the

models’ predictive accuracy.

To construct the feature set, we start by summing the total contribution amounts from

each donor to each candidate in each election cycle. When candidates run in multiple states

or multiple parties across di!erent election cycles, we treat them as separate candidates.

We reduce these contributions down to a contribution matrix X where X ij represents the

average amount that donor j gave to candidate i over all available election cycles. We use

averages to reduce the scale di!erences between candidates that run in di!erent numbers of

election cycles.

Using X, we create two types of donation summary features. The summary features were

calculated for candidates in the training set in accordance with the ten-fold cross-validation

scheme as follows. Let F be the set of indices for candidates in the holdout fold at any step

of the cross-validation procedure. For each donor, we calculate the dollar-weighted average

scaling for each donor j to candidate i as:

z(i)j =

∑
w →=i,w →↑F yw Xwj∑

w →=i,w →↑F Xwj
,

where yw is the static scaling for candidate w after they take o”ce. With these donor

weighted averages, we calculate two types of summary features for candidate i that include

no forbidden information from the candidate itself or candidates in the holdout fold. First,

we calculate the dollar-weighted average scaling for candidate i using the donor scalings z(i)j

as in Equation 2, where the weights are the proportion of donations candidate i received from

donor j. Second, we bin the z(i)j ’s into bins between →4 and 4 of width 0.2, and calculate

the proportion of donations to candidate i that fall into each bin. Legislators in the training

set receive the score from the cross-validation step where they were in the holdout fold.

We also include dummy variables for state, and dummy variables for larger individual

donors. To improve coverage within states while reducing the computational complexity

of the model, we include individual donors as dummy variables if they gave to at least
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25% of the candidates within at least one state for the model that includes general election

donations, and 15% of the candidates for the model that only includes primary donations.

Figure A.3 reports the results of the cross-validation for both the primary and general

election models. We experimented with choosing log2(n), sqrt(n), 0.05 · n, 0.10 · n, 0.15 · n
predictors at each split, where n is the total number of features. Figure A.4 shows that the

most predictive features were by far the donation summary features and the state dummy

variables.

Figure A.3 – Cross-validation results for choosing number of pre-
dictors

As we note in the methods section, the state contribution data is more sparse than the

federal contribution data, so borrowing information from donors across states is an important

way that our model is able to make more accurate predictions for states with less available

data. We directly assessed this possibility by experimenting with training separate models

by state, and found that the overall mean squared prediction error decreases by 38% when

we allow the ML model to pool information across states.

The reason for this is that out-of-state giving is a common enough phenomenon among

larger state donors to help the model make better predictions by pooling information across

states. Out of the donors and candidates that meet our modeling data restrictions (i.e.,

donors who gave to at least 5 candidates with an NP score and candidates that received

donations from at least 5 of these donors), 22% of donors gave to campaigns in at least two

di!erent states. These “multistate” donors contributed to campaigns in 5 di!erent states

on average, and represent 15% of the contributions in the modeling data. Figure A.5 plots

the average proportion of multistate donors and contributions per candidate by state in our

modeling data.
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Figure A.4 – Feature importance for general election model
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Figure A.5 – Average Proportion of Multistate Donors and Dona-
tions per Candidate, by State.
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A.3 Contribution Data Validation

To evaluate the quality of the National Institute on Money in Politics’s (NIMSP) donor

identity resolution software, we benchmark the set of NIMSP donor IDs against the donor

IDs reported in the Database of Ideology, Money in Politics, and Elections (DIME) (Bonica,

2023). DIME is widely considered to employ literature-standard entity resolution processes.

Conveniently, the coverage of state legislative campaign finance data in DIME is nearly

identical to that of the NIMSP data, but donor IDs in DIME are constructed independently

of the IDs reported in NIMSP.

To compare the donor IDs produced by NIMSP and DIME, we identify a set of donors

that provide the most information in our scaling process: donors that contribute to at least 10

distinct candidates. (We have confirmed that the following results are very similar for cuto!s

between 5 and 50). Then for every donor in each data source, we calculate the number of

di!erent election cycles in which that donor ID is observed making at least one contribution.

Finally, we aggregate these results across donors within the same data source. The resulting

quantity—the number of election cycles in which the average donor contributes—captures

the extent to which the NIMSP and DIME identity resolution softwares match individual

donors across time. This is important because our scalings rely heavily on donors that

“bridge” candidates across election cycles and jurisdictions.

We conduct this exercise separately for non-individual and individual donors and all

donors. The results of this exercise are reported in the Figure A.6. The horizontal axis

reports the average number of election cycles in which a donor contributes to at least one

candidate and the vertical axis reports the share of donors. Results are plotted separately

for NIMSP (blue) and DIME (red) and the vertical lines and black numbers report averages

within data sources. Overall, we find that the distribution of donor persistence across time

is highly similar between NIMSP and DIME. In aggregate, donors in NIMSP contribute

in 5.9 election cycles while the same value in DIME is 5.7. Individual donors contribute

in 5.5 election cycles in NIMSP and 5.9 in DIME, on average. And non-individual donors

contribute in 7.5 election cycles in DIME and 5.7 in NIMSP, on average. We conclude that

the donor IDs in NIMSP and DIME are highly stable.

As a further robustness check, we reconstruct our baseline Hall-Snyder scores using the

DIME data rather than NIMSP data. Figure A.7 plots Hall-Snyder scores calculated using

the NIMSP data (i.e., scalings reported in the main paper) on the vertical axis and Hall-

Snyder scores calculated using DIME data on the horizontal axis. As is apparent, the two

scalings are highly correlated (r=.97 overall, .92 for Democrats, .88 for Republicans).
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Figure A.6 – Distribution of Donor Persistence in NIMSP and
DIME Data.

Figure A.7 – Hall-Snyder Scores Generated NIMSP and DIME
Data Correlate Highly. This figure shows the correlation between Hall-
Snyder scores generated using NIMSP data (vertical axis) and DIME data
(horizontal axis).
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Finally, we re-run our main analyses using the DIME-based Hall-Snyder scores. Overall,

the results are highly similar between NIMSP- and DIME-based Hall-Snyder scores. We

conclude that our results are both replicable and robust to alternative identity resolution

softwares
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A.4 Within-State Scaling Correlations

In this section, we examine the within-party correlations of both the Hall-Snyder and ML
scores with NP-Scores across states.

Figure A.8 plots within-state correlations between Hall-Snyder and ML scores with NP-
Scores. Correlations are high in many states, but there are some states and parties where
the correlations are quite low, which is to be expected given the large number of di!erent
states and contexts in the data.

Figure A.8 – State-Level Within Party Correlations Between Scal-
ings and NP-Scores. Hall-Snyder Scores correlate highly with NP-Scores
within party and state.
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A.5 Scaling Robustness to Changes in Campaign Fi-

nance Regulations

In this section we explore the sensitivity of the NP-score predictions to changes in contri-

bution limits and other campaign finance regulations during the period we study. Because

our specifications always include controls for between-state and between-year di!erences in

prediction error, the most important source of confounding to investigate is within-state

prediction error trends related to these changes net of the global time trend in prediction

error. To probe the possibility that the prediction error may be sensitive to these within-

state regulatory changes, we have included an analysis of whether the prediction error in

all the scalings we employ is related to changes in campaign finance regulations, including

contribution limits, disclosure rules, and public financing (obtained from the Campaign Fi-

nance Institute’s state law database, http://www.cfinst.org/law/stateLinks.aspx). To

address di!erent concerns about bias, we use two definitions of prediction error:

Squared Prediction Error = (ŷ → y)2

Signed Prediction Error =





sign(y) · (ŷ → y) if sign(y) = sign(ŷ)

|ŷ|→ |y| if sign(y) ↑= sign(ŷ)
where sign(x) =





1 if x ↓ 0

→1 if x < 0.

The squared prediction error metric simply captures the magnitude of the errors in any

direction, while the signed prediction error captures whether the model predicts the candidate

as too “moderate” (i.e., model errs in the direction of too much shrinkage towards zero,

always represented as negative errors) or too “extreme” (i.e., model errs in the direction

of too much inflation away from zero, always represented as positive errors). There are

two cases in the signed error function to properly sign errors for the edge cases where the

predicted and actual NP Score do not share the same sign (< 3% of cases for the ML models).

The squared prediction error results presented in Table A.4 suggest that most regulatory

changes are not statistically significantly related to changes in prediction error across the 5

scalings we employ, and in the cases where they are statistically significant, the coe”cients are

small relative to the overall mean squared prediction error. Similarly, the signed prediction

error coe”cients in Table A.5 are often not statistically significant and are small relative to

the overall root mean squared prediction error (negative coe”cients indicate more shrinkage

errors made after the policy change, positive coe”cients indicate more inflation errors). The

results also underscore the advantage of using 5 di!erent predictions in our analyses, since

no regulatory change is associated with the prediction error in the same way across the 5

11
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Table A.4 – Squared Prediction Error.

Squared Prediction Error
HS ML (All) ML (Primary) Static CF Dynamic CF

Contribution Limits (1000s)
Individual -0.002 -0.007 -0.015 0.000 0.003

(0.005) (0.003) (0.006) (0.007) (0.008)
PAC -0.002 -0.001 0.003 -0.008 -0.008

(0.008) (0.004) (0.007) (0.005) (0.004)
Corp 0.003 0.000 -0.002 0.005 0.006

(0.004) (0.001) (0.002) (0.003) (0.003)
Labor 0.003 0.005 0.017 -0.002 -0.001

(0.004) (0.003) (0.005) (0.005) (0.004)
Other Candidate 0.005 0.003 -0.004 0.000 -0.006

(0.011) (0.003) (0.006) (0.005) (0.006)
Public Funding Provided -0.013 0.004 0.007 0.000 0.038

(0.019) (0.008) (0.009) (0.014) (0.012)
Donor Disclosure Minimum Amt. (10s) -0.002 -0.002 -0.004 0.001 0.003

(0.002) (0.001) (0.001) (0.002) (0.002)
Electronic Disclosure Mandatory -0.013 -0.001 -0.004 -0.024 -0.020

(0.019) (0.008) (0.009) (0.016) (0.022)
N 17505 17423 9676 28313 28188
Mean Squared Prediction Error 0.264 0.081 0.087 0.251 0.284
State FEs Y Y Y Y Y
Year FEs Y Y Y Y Y
Note: Std. errors clustered by state.

predictions. For example, the HS, ML Primary, and static CF scores make more inflation

errors after states switch to allowing public funding, but the main ML and dynamic CF

scores are insensitive to this policy change. This gives us confidence that our results across

the 5 predictions are unlikely to su!er from the same source of bias related to regulatory

changes.

As a further check on sensitivity to contribution limits, we also show that the dollar

amount of contributions does not appear to be driving our predictive performance. Figure

A.9 shows the correlation between Hall-Snyder scores computed using contribution amounts

(horizontal axis) and an alternative version computed using an indicator for contributions

(vertical axis). The former scaling is the same Hall-Snyder scaling employed in the main

paper, while the latter scaling leverages only the decision to donate and not the actual

contribution amount. As is apparent, the within-party and overall correlations between

these scalings are quite high (r=.96 for Democrats, r=.94 for Republicans, r=.98 overall).

The results suggest that it is the decision to donate, rather than the donation amount, that

primarily drives our ideological scaling, matching the conclusions of Bonica (2014, 2018).
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Table A.5 – Signed Prediction Error.

Signed Prediction Error
HS ML (All) ML (Primary) Static CF Dynamic CF

Contribution Limits (1000s)
Individual -0.017 -0.003 -0.010 -0.001 0.003

(0.006) (0.005) (0.012) (0.009) (0.011)
PAC -0.007 -0.001 0.003 -0.001 -0.006

(0.010) (0.004) (0.014) (0.006) (0.007)
Corp 0.000 -0.001 -0.004 0.000 0.000

(0.004) (0.001) (0.003) (0.004) (0.004)
Labor 0.013 0.005 0.014 -0.004 -0.005

(0.006) (0.004) (0.012) (0.008) (0.009)
Other Candidate -0.003 -0.007 -0.014 0.013 0.014

(0.013) (0.005) (0.013) (0.010) (0.012)
Public Funding Provided 0.032 0.003 0.034 0.048 -0.011

(0.022) (0.008) (0.014) (0.028) (0.035)
Donor Disclosure Minimum Amt. (10s) -0.001 -0.001 -0.002 -0.003 0.000

(0.002) (0.002) (0.003) (0.002) (0.003)
Electronic Disclosure Mandatory 0.001 -0.001 -0.028 -0.010 -0.007

(0.019) (0.009) (0.016) (0.018) (0.021)
N 17505 17423 9676 28313 28188
Root Mean Squared Prediction Error 0.514 0.284 0.296 0.501 0.533
State FEs Y Y Y Y Y
Year FEs Y Y Y Y Y
Note: Std. errors clustered by state.

Figure A.9 –Hall-Snyder Scores Generated Contribution Amounts
and Contribution Indicators Correlate Highly. This figure shows
the correlation between Hall-Snyder scores generated using contribution
amounts (vertical axis) and contribution indicators (horizontal axis).
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A.6 Roll Call Classification Exercise

Another way to validate the new scalings is to use them to predict the outcome of specific

roll-call votes. To do so, we follow Bonica (2014, 2018) and calculate the percentage of

state legislative roll-call votes that can be correctly classified using an optimal cutting-point

procedure described in Poole and Rosenthal (2007).23 For this exercise, we construct a panel

containing the near-universe of roll-call votes cast in all 99 state legislative chambers for the

years 2010-2022, and a subset of states for the years 2000-2009. Overall, this panel includes

72 million roll-call votes.

Table A.6 – Number of State Legislative Roll Call Votes, 2000-
2022.

Year Overall House Senate Year Overall House Senate
2000 525,030 502,200 22,830 2012 3,901,469 2,860,733 1,040,736
2001 1,335,741 1,313,014 22,727 2013 4,901,037 3,647,518 1,253,519
2002 647,393 628,493 18,900 2014 3,726,559 2,726,239 1,000,320
2003 1,469,279 1,448,997 20,282 2015 5,448,711 4,052,937 1,395,774
2004 905,406 880,660 24,746 2016 4,058,217 2,962,530 1,095,687
2005 1,423,359 1,396,849 26,510 2017 5,914,265 4,297,685 1,616,580
2006 893,547 867,604 25,943 2018 4,622,352 3,315,950 1,306,402
2007 1,296,335 1,275,055 21,280 2019 6,164,053 4,456,106 1,707,947
2008 908,425 884,248 24,177 2020 3,619,255 2,527,984 1,091,271
2009 1,834,702 1,534,968 299,734 2021 6,224,710 4,552,591 1,672,119
2010 2,212,753 1,570,450 642,303 2022 4,748,004 3,444,087 1,303,917
2011 4,710,315 3,489,983 1,220,332

This state legislative roll call data was assembled from two sources. First, data for the

near-universe of roll call votes cast in all 99 state legislative chambers for the years 2010-

2022 was collected by the authors from www.Legiscan.com. This data consists of 60.8 million

individual votes. We supplement this data with 11.2 million roll call votes for the years 2000-

2009 from Fouirnaies and Hall (2022) for a varying panel of 21 states.24 Combined, our roll

call dataset encompasses 72 million distinct votes. Following Bonica (2014, 2018) and Poole

and Rosenthal (2007), we remove lopsided roll calls with margins greater than 97.5% and

omit abstentions and missed votes. Table A.6 reports the total number roll-call votes in our

dataset by chamber and year.

23Specifically, for every roll-call in our dataset, we find the maximally-classifying point in one-dimensional
space that predicts “Yea” votes on one side and “Nay” votes on the other. We then report the percentage
of all votes cast that are correctly predicted.

24We include the unbalanced panel of states from 2000-2009 in our main analyses to evaluate the predictive
capacity of our Hall-Snyder scores over an extended time frame. Our results in Table A.7 are very similar
if we instead focus on the years 2010-2022 for which we have a balanced panel.
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Table A.7 – Percent of State Legislative Roll Call Votes Classified
Correctly, 2000-2022.

Scaling Overall House Senate
NP-Score 0.914 0.913 0.920

(0.755) (0.752) (0.767)
ML Scaling 0.900 0.899 0.906

(0.706) (0.705) (0.712)
Hall-Snyder Score 0.890 0.889 0.899

(0.678) (0.676) (0.690)
Static CFscore 0.883 0.881 0.888

(0.663) (0.661) (0.676)
Party 0.856 0.858 0.847

(0.586) (0.593) (0.549)
Note: Aggregate Proportional Reduction in Error re-
ported in parantheses.25 Table is ordered by overall
classification rate.

Using this data, for each roll call and scaling, we calculate the optimal cutting point

between “yea” and “nay” votes (Poole and Rosenthal 2007). Leveraging these cutpoints, we

impute predicted roll call votes and compare the result to the true votes cast.

Table A.7 reports the classification rates and aggregate proportional reduction in error

(APRE) for our new scores and, for comparison, NP-Scores, dynamic and static CFscores,

and the naive indicator for party.26 The table orders the scalings by overall prediction rate.

As can be seen, the order is as expected: the ML scores do the best job of replicating the

classification success of the NP-Scores themselves, the Hall-Snyder scores do almost as good

a job, the CFscores do slightly worse, and all four outperform the naive Party model.

25APREi =
∑J

j=1{minority votej→classification errorsij}∑J
j=1 minority votesj

for scaling i and roll call j.
26We exclude DW-DIME Scores from this analysis because their coverage is insu!cient to accurately calculate
representative cutting-points.
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A.7 Midpoint Estimate Robustness Checks

Estimates with Presidential Vote Share

In this table, we re-estimate the midpoint regressions using presidential vote share to control

for district preferences instead of district fixed e!ects. As the table shows, we find generally

larger estimates of the advantage in this specification, but with significantly less data.

Table A.8 –Advantage of More-Moderate Candidates in Contested
General Elections, 2000-2022.

Dem Vote Share

(1) (2) (3) (4)

ML Scaling 0.17 0.12 0.14 0.15
(0.01) (0.01) (0.01) (0.01)

ML Scaling (Primary donations Only) 0.09 0.05 0.06 0.09
(0.01) (0.01) (0.02) (0.01)

Hall-Snyder Score 0.24 0.15 0.18 0.20
(0.01) (0.01) (0.01) (0.01)

Static CFscore 0.60 0.30 0.53 0.59
(0.02) (0.02) (0.03) (0.02)

Dynamic CFscore 0.38 0.25 0.40 0.38
(0.02) (0.02) (0.04) (0.02)

District-by-Regime FE N N N N
Year FE Y Y Y Y
Controls for Primary Contributions N Y N N
Controls for Dem. Pres. Vote Share Y Y Y Y
Only races with below-median
contribution gap

N N Y N

Only races with ↓ 10
primary donors per candidate

N N N Y

Each cell in this table reports the coe!cient on Midpoint from Equation 4 which
is scaled to run from 0 (most liberal) to 1 (most conservative) for each scaling.
Robust standard errors are clustered by district-regime in parentheses.
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Estimates without Low-Correlation and High-Error States

In this table, we re-estimate the midpoint regressions after excluding states with below-

median average within-party correlations between ML scores and NP-Scores (first row) and

above-median average NP-Score prediction error as reported in Shor and McCarty (2011)

(second row). The estimates reported in this table are substantively identical to those

estimated using the full sample in Table 1.

Table A.9 –Advantage of More-Moderate Candidates in Contested
General Elections, 2000-2022.

Dem Vote Share

(1) (2) (3) (4)

ML Scaling (Excludes low-correlation states) 0.15 0.11 0.14 0.09
(0.03) (0.03) (0.04) (0.03)

ML Scaling (Excludes high-error states) 0.23 0.16 0.14 0.16
(0.04) (0.04) (0.05) (0.06)

District-by-Regime FE Y Y Y Y
Year FE Y Y Y Y
Controls for Primary Contributions N Y N N
Only races with below-median
contribution gap

N N Y N

Only races with ↓ 10
primary donors per candidate

N N N Y

Each cell in this table reports the coe!cient on Midpoint from Equation 4 which
is scaled to run from 0 (most liberal) to 1 (most conservative) for each scaling.
Robust standard errors are clustered by district-regime in parentheses. Sample
restrictions are reported in parentheses in the first column.
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A.8 Primary Extremism Estimate Robustness Checks

Primary Extremism Estimates After Restricting to Races with

Above-Median Contribution Amounts

In this table, we re-estimate the primary extremism regressions after restricting the sample

to races with above-median contribution amounts. Our conclusions remain unchanged.

Table A.10 –Advantage of More-Extreme Candidates in Contested
Primary Elections, 2000-2022.

Primary Vote Share

(1) (2) (3) (4)

ML Scaling -0.20 -0.20 -0.08 -0.08
(0.03) (0.02) (0.03) (0.02)

ML Scaling (Primary donations only) -0.18 -0.18 -0.11 -0.10
(0.04) (0.03) (0.04) (0.03)

Hall-Snyder Score -0.15 -0.16 -0.11 -0.10
(0.03) (0.02) (0.04) (0.03)

Static CFscore 0.31 0.31 0.30 0.33
(0.06) (0.05) (0.05) (0.05)

Dynamic CFscore 0.29 0.29 0.27 0.31
(0.06) (0.05) (0.05) (0.05)

District-by-Party FE Y N Y N
Party-by-Year FE Y N Y N
Number of Candidates FE Y N Y N
Race FE N Y N Y
Controls for Primary Contributions N N N N
Only races with below-median
contribution gap

Y Y N N

Only races with ↓ 20
donors per candidate

N N Y Y

Each cell in this table reports the coe!cient on Relative Centrism from Equation
5 which is scaled to run from 0 (most extreme) to 1 (most moderate) for each
scaling. The sample is restricted to contested primary elections and excludes races
in districts where the opposing party received greater than 70% of the two-party
presidential vote share. Robust standard errors in parentheses.
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Estimates without Low-Correlation and High-Error States

In this table, we re-estimate the primary extremism regressions after excluding states with

below-median average within-party correlations between ML scores and NP-Scores (first

row) and above-median average NP-Score prediction error as reported in Shor and McCarty

(2011) (second row). The estimates reported in this table for our preferred specification

(column 2) are very similar to those estimated using the full sample in Table 4.

Table A.11 –Advantage of More-Extreme Candidates in Contested
Primary Elections, 2000-2022.

Primary Vote Share

(1) (2) (3) (4) (5) (6) (7) (8)

ML Scaling (Excludes low-correlation states) -0.23 -0.23 -0.24 -0.23 -0.25 -0.25 -0.11 -0.11
(0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.03)

ML Scaling (Excludes high-error states) -0.14 -0.15 -0.13 -0.14 -0.14 -0.14 -0.04 -0.04
(0.04) (0.04) (0.04) (0.03) (0.07) (0.05) (0.07) (0.05)

District-by-Party FE Y N Y N Y N Y N
Party-by-Year FE Y N Y N Y N Y N
Number of Candidates FE Y N Y N Y N Y N
Race FE N Y N Y N Y N Y
Controls for Primary Contributions N N Y Y N N N N
Only races with below-median
contribution gap

N N N N Y Y N N

Only races with ↓ 20
donors per candidate

N N N N N N Y Y

Each cell in this table reports the coe!cient on Relative Centrism from Equation 5 which is scaled to run from 0 (most
extreme) to 1 (most moderate) for each scaling. The sample is restricted to contested primary elections and excludes
races in districts where the opposing party received greater than 70% of the two-party presidential vote share. Robust
standard errors in parentheses.
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A.9 Results Across Scaling Thresholds

In this section, we explore how our main midpoint and primary extremism results vary when

we change the threshold required to include a candidate in the regression.

Midpoint Estimates

Figure A.10 – Robustness of General Election Analysis to Scaling
Thresholds. This figure reports the coe!cient on Midpoint across donor
thresholds. The donor threshold is the minimum number of unique donors
that both candidates in a race must receive a contribution from to be in-
cluded in the analysis. Vertical bars report 95% confidence intervals.
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Primary Extremism Estimates

Figure A.11 – Robustness of Primary Election Analysis to Scaling
Thresholds. This figure reports the coe!cient on Relative Centrism across
donor thresholds. The donor threshold is the minimum number of unique
donors that all candidates in a primary race must receive a contribution
from to be included in the analysis. Vertical lines report 95% confidence
intervals from robust standard errors.
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A.10 Regression Discontinuity Details and Robustness

Checks

In this section, we expand on the RD results presented in the paper. The key assumption

for the RD to be a valid estimate is that there is no sorting at the discontinuity: that is,

in virtually tied elections, it should not be the case that either the more-moderate or more-

extreme candidate systematically end up winning. As discussed and validated in Eggers

et al. (2015), this is plausible since it is exceedingly unlikely that primary candidates are

able to manipulate the results of these elections. Nevertheless, we can also directly test this

assumption—and look for chance imbalances in our sample—by estimating the same RD

“e!ect” where the outcome is the vote share of the nominee’s party in the previous election

cycle. We carry out these tests in Table A.12 and find no evidence for sorting or for an

imbalance that would contribute to our negative estimates.

Table A.12 – E!ect of Extremist Nominee on Lagged General Elec-
tion Vote Share, U.S. State Legislatures 2000-2022.

Party Vote Share

(1) (2) (3) (4)

ML Scaling 0.00 0.03 0.00 0.02
(0.06) (0.05) (0.05) (0.08)

Hall-Snyder Score 0.03 0.02 0.02 0.04
(0.06) (0.05) (0.05) (0.07)

Polynomial 1 3 5 CCT
Bandwidth .10 - - -

Note: Each cell in this table reports the coe!cient on
Extremist Primary Win. Robust standard errors are
reported in parentheses.

Second, in Figure A.12 we also evaluate how the RD estimate changes as we change the

cuto! in terms of ideological distance between candidates used to determine which races

enter the sample. In each panel, the figure plots the RD estimate across cuto! size, from

the 10th to the 90th percentile. At the left of the plot, nearly all cases are being included in

the data, including those where the two candidates are quite similar ideologically so that the

“treatment” of nominating the more-extreme one is weak. Towards the right of the plot, we

are strengthening the treatment by only including cases where the more-extreme candidate

is substantially more extreme than the more-moderate candidate. As the figures show, with

both measures, we find that the penalty grows as we strengthen the treatment.
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Figure A.12 – E!ect of Extremist Nominee on General Election
Vote Share Across Possible Cuto!s.
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A.11 Scaling Error and MSE Correlations

In this section, we document the correlation between measurement error and district com-

petitiveness for our four scaling measures. Because donors are access seeking as well as ide-

ological, candidates in very uncompetitive districts are likely to be scaled as too moderate

relative to their true NP-Score. The ML scores do the best at ameliorating this relationship

out of the four scores.

Figure A.13 – Dem. Presidential Vote Share (General Election)
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